Given the importance of public engagement in governments' adoption of artificial intelligence systems, artificial intelligence researchers and practitioners spend little time reflecting on who those publics are. Classifying publics affects assumptions and affordances attributed to the publics' ability to contribute to policy or knowledge production. Further complicating definitions are the publics' role in artificial intelligence production and optimization. Our structured analysis of the corpus used a mixed method, where algorithmic generation of search terms allowed us to examine approximately 2500 articles and provided the foundation to conduct an extensive systematic literature review of approximately 100 documents. Results show the multiplicity of ways publics are framed, by examining and revealing the different semantic nuances, affordances, political and expertise lenses, and, finally, a lack of definitions. We conclude that categorizing publics represents an act of power, politics, and truth-seeking in artificial intelligence.
Keywords: citizen; engagement; human-in-the-loop; participant; participation; public; stakeholder.