FAK and p130Cas modulate stiffness-mediated early transcription and cellular metabolism

bioRxiv [Preprint]. 2024 Jan 16:2024.01.15.575789. doi: 10.1101/2024.01.15.575789.

Abstract

Cellular metabolism is influenced by the stiffness of the extracellular matrix. Focal adhesion kinase (FAK) and its binding partner, p130Cas, transmit biomechanical signals about substrate stiffness to the cell to regulate a variety of cellular responses, but their roles in early transcriptional and metabolic responses remain largely unexplored. We cultured mouse embryonic fibroblasts with or without siRNA-mediated FAK or p130Cas knockdown and assessed the early transcriptional responses of these cells to placement on soft and stiff substrates by RNA sequencing and bioinformatics analyses. Exposure to the stiff ECM altered the expression of genes important for metabolic and biosynthetic processes, and these responses were influenced by knockdown of FAK and p130Cas. Our findings reveal that FAK-p130Cas signaling mechanotransduces ECM stiffness to early transcriptional changes that alter cellular metabolism and biosynthesis.

Publication types

  • Preprint