Aims: Current guidelines advise against the use of lipid-lowering drugs during pregnancy. This is based only on previous observational evidence demonstrating an association between statin use and congenital malformations, which is increasingly controversial. In the absence of clinical trial data, we aimed to use drug-target Mendelian randomization to model the potential impact of fetal LDL-lowering, overall and through PCSK9 drug targets, on congenital malformations.
Methods and results: Instrumental variants influencing LDL levels overall and through PCSK9-inhibitor drug targets were extracted from genome-wide association study (GWAS) summary data for LDL on 1 320 016 individuals. Instrumental variants influencing circulating PCSK9 levels (pQTLs) and liver PCSK9 gene expression levels (eQTLs) were extracted, respectively, from a GWAS on 10 186 individuals and from the genotype-tissue expression project. Gene-outcome association data was extracted from the 7th release of GWAS summary data on the FinnGen cohort (n = 342 499) for eight categories of congenital malformations affecting multiple systems. Genetically proxied LDL-lowering through PCSK9 was associated with higher odds of malformations affecting multiple systems [OR 2.70, 95% confidence interval (CI) 1.30-5.63, P = 0.018], the skin (OR 2.23, 95% CI 1.33-3.75, P = 0.007), and the vertebral, anorectal, cardiovascular, tracheo-esophageal, renal, and limb association (VACTERL) (OR 1.51, 95% CI 1.16-1.96, P = 0.007). An association was also found with obstructive defects of the renal pelvis and ureter, but this association was suggestive of horizontal pleiotropy. Lower PCSK9 pQTLs were associated with the same congenital malformations.
Conclusion: These data provide genetic evidence supporting current manufacturer advice to avoid the use of PCSK9 inhibitors during pregnancy.
Keywords: PCSK9-inhibitors; Low-density lipoprotein; Mendelian randomization; congenital malformations; pregnancy.
Using genetic techniques to mimic the effects of PCSK9-inhibitors, a group of lipid-lowering medications, this study provides evidence to support recommendations to avoid the use of these medications in pregnancy due to potential risk of multiple malformations in the newborn.This study provides genetic evidence to support potential associations of PCSK9-inhibitor medications with newborn malformations affecting multiple organ systems, the skin, and a cluster of structural defects simultaneously affecting the spine, anus/rectum, heart, throat, kidneys, arms and legs.There was also weaker evidence of an association of PCSK9-inhibitor medications with newborn malformations resulting in blockages of the kidneys and urine system, though the evidence was less certain for these than for the other malformations.
© The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology.