Parvalbumin-expressing (PV) interneurons are key neuronal elements to a global excitatory-inhibitory balance in normal cortical functioning. To better understand the circuit functions of PV interneurons, reliable animal models are needed. This study investigated the sensitivity and specificity of the most frequently used PV-Cre/tdTomato mouse line in this regard. The colocalization of the transgene (tdTomato) with the parvalbumin protein, with GAD1 (a conclusive inhibitory cell marker) and Vglut1 (a conclusive excitatory cell marker) as well as with a marker for perineuronal nets (WFA) was assessed and a substantial proportion of layer 5 PV neurons was found to be excitatory and not inhibitory in the PV-Cre/tdTomato mouse. The intersectional transgenic mouse line Vgat-Cre/PV-Flp/tdTomato provided a solution, since no colocalization of tdTomato with the Vglut1 probe was found there. In conclusion, the Vgat-Cre/PV-Flp/tdTomato mouse line seems to be a more reliable animal model for functional studies of GABAergic PV interneurons.
© 2024. The Author(s).