CD133-Dependent Activation of Phosphoinositide 3-Kinase /AKT/Mammalian Target of Rapamycin Signaling in Melanoma Progression and Drug Resistance

Cells. 2024 Jan 26;13(3):240. doi: 10.3390/cells13030240.

Abstract

Melanoma frequently harbors genetic alterations in key molecules leading to the aberrant activation of PI3K and its downstream pathways. Although the role of PI3K/AKT/mTOR in melanoma progression and drug resistance is well documented, targeting the PI3K/AKT/mTOR pathway showed less efficiency in clinical trials than might have been expected, since the suppression of the PI3K/mTOR signaling pathway-induced feedback loops is mostly associated with the activation of compensatory pathways such as MAPK/MEK/ERK. Consequently, the development of intrinsic and acquired resistance can occur. As a solid tumor, melanoma is notorious for its heterogeneity. This can be expressed in the form of genetically divergent subpopulations including a small fraction of cancer stem-like cells (CSCs) and non-cancer stem cells (non-CSCs) that make the most of the tumor mass. Like other CSCs, melanoma stem-like cells (MSCs) are characterized by their unique cell surface proteins/stemness markers and aberrant signaling pathways. In addition to its function as a robust marker for stemness properties, CD133 is crucial for the maintenance of stemness properties and drug resistance. Herein, the role of CD133-dependent activation of PI3K/mTOR in the regulation of melanoma progression, drug resistance, and recurrence is reviewed.

Keywords: AKT; CD133; CSCs; PI3K; mTOR; melanoma.

Publication types

  • Review

MeSH terms

  • Drug Resistance, Neoplasm
  • Humans
  • Melanoma* / pathology
  • Phosphatidylinositol 3-Kinase / metabolism
  • Phosphatidylinositol 3-Kinases / metabolism
  • Proto-Oncogene Proteins c-akt / metabolism
  • Signal Transduction
  • Sirolimus* / pharmacology
  • TOR Serine-Threonine Kinases / metabolism

Substances

  • Sirolimus
  • Phosphatidylinositol 3-Kinases
  • Phosphatidylinositol 3-Kinase
  • Proto-Oncogene Proteins c-akt
  • TOR Serine-Threonine Kinases

Grants and funding

This research received no external funding.