Myopia is widely recognized as an epidemic. Studies have found a link between Transforming Growth Factor-beta (TGF-β) and myopia, but the specific molecular mechanisms are not fully understood. In this study, a monocular model in tree shrews (Tupaia belangeri) was established to verify the molecular mechanism of TGF-β in myopia. The results indicated that there were significant changes in TGF-βs during the treatment of myopia, which could enhance the refractive ability and axial length of the eye. Immunohistochemical staining, real-time fluorescent quantitative PCR, and immunoblotting results showed a significant upregulation of MMP2 and NF-κB levels, and a significant downregulation of COL-I expression in the TGF-β treated eyes, suggesting that NF-κB and MMP2 are involved in the signaling pathways of TGF-βs induced myopia and axial elongation. Moreover, the expression levels of IL-6, IL-8, MCP-1, IL-1β, TNF-α, TAK1, and NF-κB in the retina were all significantly elevated. This indicates that TGF-β stimulates the inflammatory response of retinal pigment epithelial cells through the TAK1-NF-κB signaling pathway. In conclusion, this study suggests that TGF-β promotes the progression of myopia by enhancing intraocular inflammation.
Keywords: Inflammation; Myopia; Retinal signaling; Transforming growth factor β; Tree shrew.
Copyright © 2024 Elsevier Ltd. All rights reserved.