Background: Recent studies highlighted that stress hyperglycemia ratio (SHR) is a potential predictor for future risk in heart failure (HF) patients. However, its implications specifically in HF with preserved ejection fraction (HFpEF) are not yet fully elucidated. We aimed to investigate the association between SHR and long-term clinical outcomes in HFpEF patients.
Methods: HFpEF patients enrolled between 2015 and 2023, were followed (mean 41 months) for a composite outcome of all-cause, cardiovascular mortality, and HF rehospitalization. SHR was established as the ratio of acute-chronic glycemia from admission blood glucose and glycated hemoglobin. The optimal cut-off for SHR to predict outcomes based on event prediction was determined through ROC analysis, and the cutoff was identified at 0.99. The effect of SHR on adverse risk was examined through the Cox hazards and Kaplan-Meier survival methods. A Pearson correlation analysis was conducted to assess the relationship between SHR and the severity of HF, as indicated by N-terminal pro-brain natriuretic peptide (NT-proBNP) levels. Furthermore, the incremental prognostic value of SHR was further assessed by the integrated discrimination improvement (IDI) and the net reclassification improvement (NRI).
Results: Among the 400 enrolled patients, 190 individuals (47.5%) encountered composite events over the 41-month follow-up period. SHR was significantly elevated in patients with events compared with those without (p < 0.001). All patients were stratified into high SHR (n = 124) and low SHR (n = 276) groups based on the SHR cutoff. The high SHR group had a significantly higher incidence of adverse events than the low SHR group (log-rank; p < 0.001). Additional analysis indicated a poorer prognosis in patients with low left ventricular EF (LVEF) levels (50 < LVEF < 60) and high SHR (SHR > 0.99) in comparison to the other groups (log-rank p < 0.001). In adjusted analysis, after accounting for age, sex, diabetes, and NT-proBNP, elevated SHR remained independently predictive of adverse outcomes (adjusted HR: 2.34, 95% CI 1.49-3.67; p < 0.001). Furthermore, adding SHR to a model with MAGGIC score provided an incremental improvement in predicting adverse events. Additionally, SHR displayed a slight correlation with NT-proBNP.
Conclusion: Elevated SHR was independently associated with an increased risk for composite events of all-cause, cardiovascular mortality, and HF readmission than those with lower SHR. SHR is a valuable tool for predicting and stratifying long-term adverse risks among HFpEF patients.
Keywords: Clinical outcomes; Heart failure with preserved ejection fraction; Stress hyperglycemia ratio.
© 2024. The Author(s).