Vibrio parahaemolyticus is a significant cause of foodborne illness, and its incidence worldwide is on the rise. It is thus imperative to develop a straightforward and efficient method for typing strains of this pathogen. In this study, we conducted a pangenome analysis of 75 complete genomes of V. parahaemolyticus and identified the core gene mtlA with the highest degree of variation, which distinguished 44 strains and outperformed traditional seven-gene-based MLST when combined with aer, another core gene with high degree of variation. The mtlA gene had higher resolution to type strains with a close relationship compared to the traditional MLST genes in the phylogenetic tree built by core genomes. Strong positive selection was also detected in the gene mtlA (ω > 1), representing adaptive and evolution in response to the environment. Therefore, the panel of gene mtlA and aer may serve as a tool for the typing of V. parahaemolyticus, potentially contributing to the prevention and control of this foodborne disease.
Keywords: Core genome; Pan-genome; Positive selection; Typing; Vibrio parahaemolyticus; aer; mtlA.
© 2024 The Authors.