Gene regulatory network topology governs resistance and treatment escape in glioma stem-like cells

bioRxiv [Preprint]. 2024 Feb 7:2024.02.02.578510. doi: 10.1101/2024.02.02.578510.

Abstract

Poor prognosis and drug resistance in glioblastoma (GBM) can result from cellular heterogeneity and treatment-induced shifts in phenotypic states of tumor cells, including dedifferentiation into glioma stem-like cells (GSCs). This rare tumorigenic cell subpopulation resists temozolomide, undergoes proneural-to-mesenchymal transition (PMT) to evade therapy, and drives recurrence. Through inference of transcriptional regulatory networks (TRNs) of patient-derived GSCs (PD-GSCs) at single-cell resolution, we demonstrate how the topology of transcription factor interaction networks drives distinct trajectories of cell state transitions in PD-GSCs resistant or susceptible to cytotoxic drug treatment. By experimentally testing predictions based on TRN simulations, we show that drug treatment drives surviving PD-GSCs along a trajectory of intermediate states, exposing vulnerability to potentiated killing by siRNA or a second drug targeting treatment-induced transcriptional programs governing non-genetic cell plasticity. Our findings demonstrate an approach to uncover TRN topology and use it to rationally predict combinatorial treatments that disrupts acquired resistance in GBM.

Publication types

  • Preprint