Oxidative stress in patients suffering from obstructive sleep apnea syndrome (OSAS) is associated with a low-grade systemic inflammation, immune disturbance, and increased invasion of monocytes into the endothelium. Besides continuous positive airway pressure (PAP), hypoglossal nerve stimulation (HNS) has become a promising treatment option for patients with OSAS. We aimed to analyse the influence of HNS therapy on the cellular characteristics relevant for adhesion and immune regulation of circulating CD14/CD16 monocyte subsets. Whole blood flow cytometric measurements were performed to analyse the expression levels of different adhesion molecules and checkpoint molecule PD-L1 (programmed death-ligand 1) in connection with pro-inflammatory plasma cytokine IL-8 and the clinical values of BMI (body mass index), AHI (apnea-hypopnea index), ODI (oxygen desaturation index), and ESS (Epworth sleepiness scale) upon HNS treatment. Hypoglossal nerve stimulation treatment significantly improved the expression of adhesion molecule CD162 (P-selectin receptor) on non-classical monocytes and significantly downregulated the expression of PD-L1 on all three monocyte subsets. We conclude that the holistic improvement of different parameters such as the oxygenation of the peripheral blood, a reduced systemic inflammation, and the individual sleeping situation upon HNS respiratory support, leads to an improved immunologic situation.
Keywords: HNS therapy; PD‐L1; adhesion molecules; monocyte subsets; obstructive sleep apnea syndrome.
© 2024 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.