A versatile CRISPR-Cas13d platform for multiplexed transcriptomic regulation and metabolic engineering in primary human T cells

Cell. 2024 Feb 29;187(5):1278-1295.e20. doi: 10.1016/j.cell.2024.01.035. Epub 2024 Feb 21.

Abstract

CRISPR technologies have begun to revolutionize T cell therapies; however, conventional CRISPR-Cas9 genome-editing tools are limited in their safety, efficacy, and scope. To address these challenges, we developed multiplexed effector guide arrays (MEGA), a platform for programmable and scalable regulation of the T cell transcriptome using the RNA-guided, RNA-targeting activity of CRISPR-Cas13d. MEGA enables quantitative, reversible, and massively multiplexed gene knockdown in primary human T cells without targeting or cutting genomic DNA. Applying MEGA to a model of CAR T cell exhaustion, we robustly suppressed inhibitory receptor upregulation and uncovered paired regulators of T cell function through combinatorial CRISPR screening. We additionally implemented druggable regulation of MEGA to control CAR activation in a receptor-independent manner. Lastly, MEGA enabled multiplexed disruption of immunoregulatory metabolic pathways to enhance CAR T cell fitness and anti-tumor activity in vitro and in vivo. MEGA offers a versatile synthetic toolkit for applications in cancer immunotherapy and beyond.

Keywords: CAR T cells; CRISPR; Cas13; RNA targeting; T cell exhaustion; cancer immunotherapy; cell therapy; gene editing; metabolic engineering; synthetic biology.

MeSH terms

  • Gene Expression Profiling
  • Humans
  • Metabolic Engineering* / methods
  • RNA
  • T-Lymphocytes*
  • Transcriptome

Substances

  • RNA