This study aimed at investigating the mechanism of Trichosanthis Fructus-Allii Macrostemonis Bulbus(GX) in treating cardiovascular diseases in rats with the syndrome of combined phlegm and stasis. The rat model was established by a high-fat diet, ice-water bath combined with subcutaneous injection of adrenalin hydrochloride, and the syndrome score was determined. The serum samples of rats in the control, model, and GX groups were collected. Ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was employed to analyze the metabolic profiles of the serum samples. The differential metabolites were screened and identified by partial least squares-discriminant analysis(PLS-DA) and orthogonal partial least squares-discriminant analysis(OPLS-DA). The intervention targets of GX-regulated metabolites and their metabolic pathways were searched against MetaboAnalyst. Gene Ontology enrichment was carried out to predict the biological pathways associated with the intervention targets of metabolic pathways. A total of 129 potential biomarkers were detected in the rat model with the syndrome of combined phlegm and stasis via metabolomics, and GX regulated 54 metabolites in several metabolic pathways such as linoleic acid metabolism, sphingolipid metabolism, and tricarboxylic acid cycle. The further screening against MetaboAnalyst showed that GX recovered the levels of nine metabolites associated with cardiovascular diseases with the syndrome of combined phlegm and stasis, which involved 69 targets in the pathways regarding cholesterol metabolism, fatty acid metabolism, inflammatory response, and glucose homeostasis and metabolism. The above-mentioned results suggested that GX can alleviate the symptoms of the rat model of cardiovascular diseases with the syndrome of combined phlegm and stasis by regulating the metabolism of linoleic acid, sphingosine, docosahexaenoic acid, rosemary acid, succinic acid, adenine, L-phenylalanine, L-valine and modulating the biological pathways such as cholesterol metabolism, fatty acid metabolism, inflammatory response, and glucose homeostasis and metabolism.
Keywords: Trichosanthis Fructus-Allii Macrostemonis Bulbus; UPLC-Q-TOF-MS; biological pathways; combined phlegam and stasis; differential metabolites; intervention targets.