RNA-cleaving ribozymes are promising candidates as general tools of RNA interference (RNAi) in gene manipulation. However, compared with other RNA systems, such as siRNA and CRISPR technologies, the ribozyme tools are still far from broad applications on RNAi due to their poor performance in the cellular context. In this work, we report an efficient RNAi tool based on chemically modified hammerhead ribozyme (HHR). By the introduction of an intramolecular linkage into the minimal HHR to reconstruct the distal interaction within the tertiary ribozyme structure, this cross-linked HHR exhibits efficient RNA substrate cleavage activities with almost no sequence constraint. Cellular experiments suggest that both exogenous and endogenous RNA expression can be dramatically knocked down by this HHR tool with levels comparable to those of siRNA. Unlike the widely applied protein-recruiting RNA systems (siRNA and CRISPR), this ribozyme tool functions solely on RNA itself with great simplicity, which may provide a new approach for gene manipulation in both fundamental and translational studies.