Bio-organic fertilizer (BOF) was effective to promote the phytoremediation efficiency of heavy metal(loid)s-contaminated saline soil (HCSS) by improving rhizosphere soil properties, especially microbiome. However, there existed unclear impacts of BOF on plant metabolome and plant-driven manipulation on rhizosphere soil microbiota in HCSS, which were pivotal contributors to stress defense of plants trapped in adverse conditions. Here, a pot experiment was conducted to explore the mechanisms of BOF in improving alfalfa (Medicago sativa)-performing phytoremediation of HCSS. BOF application significantly increased the biomass (150.87-401.58 %) to support the augments of accumulation regarding heavy metal(loid)s (87.50 %-410.54 %) and salts (38.27 %-271.04 %) in alfalfa. BOF promoted nutrients and aggregates stability but declined pH of rhizosphere soil, accompanied by the boosts of rhizomicrobiota including increased activity, reshaped community structure, enriched plant growth promoting rhizobacteria (Blastococcus, Modestobacter, Actinophytocola, Bacillus, and Streptomyces), strengthened mycorrhizal symbiosis (Leohumicola, Funneliformis, and unclassified_f_Ceratobasidiaceae), optimized co-occurrence networks, and beneficial shift of keystones. The conjoint analysis of plant metabolome and physiological indices confirmed that BOF reprogrammed the metabolic processes (synthesis, catabolism, and long-distance transport of amino acid, lipid, carbohydrate, phytohormone, stress-resistant secondary metabolites, etc) and physiological functions (energy supply, photosynthesis, plant immunity, nutrients assimilation, etc) that are associated intimately. The consortium of root metabolome, soil metabolome, and soil microbiome revealed that BOF facilitated the exudation of metabolites correlated with rhizomicrobiota (structure, biomarker, and keystone) and rhizosphere oxidative status, e.g., fatty acyls, phenols, coumarins, phenylpropanoids, highlighting the plant-driven regulation on rhizosphere soil microbes and environment. By compiling various results and omics data, it was concluded that BOF favored the adaptation and phytoremediation efficiency of alfalfa by mediating the plant-soil-rhizomicrobiota interactions. The results would deepen understanding of the mechanisms by which BOF improved phytoremediation of HCSS, and provide theoretical guidance to soil amelioration and BOF application.
Keywords: Bio-organic fertilizer; Heavy metal(loid)s; Metabolome; Microbiome; Phytoremediation; Salt.
Copyright © 2024 Elsevier B.V. All rights reserved.