Spirometry is a lung function test involving deep inhalation and forceful deep exhalation. It is widely used to obtain objective information about airflow limitation and to diagnose lung diseases. In contrast, tidal spirometry is based on normal breathing and therefore much more convenient, but it is hardly used in medical care and its relation with conventional (forced) spirometry is largely unknown. Therefore, the objective of this work is to reveal the relation between tidal and forced spirometry. Employing the strong correspondence between the forced flow-volume curves and the Tiffeneau-Pinelli (TP) index, we present a method to obtain (a) the expected tidal flow-volume curve for a given TP-index, and (b) the expected TP-index for a given tidal curve. For patients with similar values of the TP-index, the tidal curves show a larger spread than the forced curves, but their average shape varies in a characteristic way with varying index. Therefore, just as with forced curves, the TP-index provides a useful objective ranking of the average of tidal curves: upon decreasing TP-index the expiratory flow rate changes in that its peak shifts towards smaller expiratory volumes, and its post-peak part becomes dented.
Keywords: Flow-volume curves; Nasal cannula; Obstructive lung diseases; Respiratory monitoring; Tidal spirometry.
Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.