SPMweb is the online webserver of the Shortest Path Map (SPM) tool for identifying the key conformationally-relevant positions of a given enzyme structure and dynamics. The server is built on top of the DynaComm.py code and enables the calculation and visualization of the SPM pathways. SPMweb is easy-to-use as it only requires three input files: the three-dimensional structure of the protein of interest, and the two matrices (distance and correlation) previously computed from a Molecular Dynamics simulation. We provide in this publication information on how to generate the files for SPM construction even for non-expert users and discuss the most relevant parameters that can be modified. The tool is extremely fast (it takes less than one minute per job), thus allowing the rapid identification of distal positions connected to the active site pocket of the enzyme. SPM applications expand from computational enzyme design, especially if combined with other tools to identify the preferred substitution at the identified position, but also to rationalizing allosteric regulation, and even cryptic pocket identification for drug discovery. The simple user interface and setup make the SPM tool accessible to the whole scientific community. SPMweb is freely available for academia at http://spmosuna.com/.
Keywords: Shortest Path Method; computational enzyme design; distal mutations; webserver.
© The Author(s) 2024. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.