Background: Pharmacokinetic data on high-dose isoniazid for the treatment of rifampicin-/multidrug-resistant tuberculosis (RR/MDR-TB) are limited. We aimed to describe the pharmacokinetics of high-dose isoniazid, estimate exposure target attainment, identify predictors of exposures, and explore exposure-response relationships in RR/MDR-TB patients.
Methods: We performed an observational pharmacokinetic study, with exploratory pharmacokinetic/pharmacodynamic analyses, in Indonesian adults aged 18-65 years treated for pulmonary RR/MDR-TB with standardized regimens containing high-dose isoniazid (10-15 mg/kg/day) for 9-11 months. Intensive pharmacokinetic sampling was performed after ≥2 weeks of treatment. Total plasma drug exposure (AUC0-24) and peak concentration (Cmax) were assessed using non-compartmental analyses. AUC0-24/MIC ratio of 85 and Cmax/MIC ratio of 17.5 were used as exposure targets. Multivariable linear and logistic regression analyses were used to identify predictors of drug exposures and responses, respectively.
Results: We consecutively enrolled 40 patients (median age 37.5 years). The geometric mean isoniazid AUC0-24 and Cmax were 35.4 h·mg/L and 8.5 mg/L, respectively. Lower AUC0-24 and Cmax values were associated (P < 0.05) with non-slow acetylator phenotype, and lower Cmax values were associated with male sex. Of the 26 patients with MIC data, less than 25% achieved the proposed targets for isoniazid AUC0-24/MIC (n = 6/26) and Cmax/MIC (n = 5/26). Lower isoniazid AUC0-24 values were associated with delayed sputum culture conversion (>2 months of treatment) [adjusted OR 0.18 (95% CI 0.04-0.89)].
Conclusions: Isoniazid exposures below targets were observed in most patients, and certain risk groups for low isoniazid exposures may require dose adjustment. The effect of low isoniazid exposures on delayed culture conversion deserves attention.
© The Author(s) 2024. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy.