The interplay of stochastic and ecological processes that govern the establishment and persistence of host-associated microbial communities is not well understood. Here we illustrate the conceptual and practical advantages of fitting stochastic population dynamics models to multi-species bacterial time series data. We show how the stability properties, fluctuation regimes and persistence probabilities of human vaginal microbial communities can be better understood by explicitly accommodating three sources of variability in ecological stochastic models of multi-species abundances: 1) stochastic biotic and abiotic forces, 2) ecological feedback and 3) sampling error. Rooting our modeling tool in stochastic population dynamics modeling theory was key to apply standardized measures of a community's reaction to environmental variation that ultimately depends on the nature and intensity of the intra-specific and inter-specific interaction strengths. Using estimates of model parameters, we developed a Risk Prediction Monitoring (RPM) tool that estimates temporal changes in persistence probabilities for any bacterial group of interest. This method mirrors approaches that are often used in conservation biology in which a measure of extinction risks is periodically updated with any change in a population or community. Additionally, we show how to use estimates of interaction strengths and persistence probabilities to formulate hypotheses regarding the molecular mechanisms and genetic composition that underpin different types of interactions. Instead of seeking a definition of "dysbiosis" we propose to translate concepts of theoretical ecology and conservation biology methods into practical approaches for the management of human-associated bacterial communities.
Keywords: environmental stochasticity; multivariate autoregressive model of population dynamics; persistence probability; population viability monitoring; stochastic community population dynamics; stochastic population dynamics of the microbiome; stochastic stability.