Nicaraven attenuates the acquired radioresistance of established tumors in mouse models via PARP inhibition

Mol Cell Biochem. 2024 Mar 11. doi: 10.1007/s11010-024-04958-6. Online ahead of print.

Abstract

Nicaraven has been reported to inhibit the activity of poly (ADP-ribose) polymerase (PARP). In this study, we investigated the probable ability of nicaraven to attenuate cancer radioresistance during fractionated radiotherapy. Tumor models were established in C57BL/6 mice and BALB/c nude mice by subcutaneous injection of Lewis mouse lung carcinoma cancer cells and A549 human lung cancer cells, respectively. When the tumors had grown to approximately 100 mm3, we initiated fractionated radiotherapy. Nicaraven or saline was administered immediately after each irradiation exposure. Compared to saline treatment, nicaraven administration significantly induced gamma-H2AX foci formation and cell apoptosis in tumors at 1 or 3 days after an additional challenge exposure to 10 Gy and inhibited tumor growth during the short-term follow-up period, suggesting increased radiosensitivity of cancer cells. Moreover, the expression of PARP in tumor tissue was decreased by nicaraven administration. Our data suggest that nicaraven likely attenuates the acquired radioresistance of cancers through PARP inhibition.

Keywords: Acquired radioresistance; Nicaraven; PARP inhibition; Radiation.