While most of current models investigating bone remodelling are based on matrix deformation, intramedullary pressure also plays a role. Bone remodelling is orchestrated by the Lacuno-Canalicular Network (LCN) fluid-flow. The aim of this review was hence to assess the influence of intramedullary pressure on the fluid circulation within the LCN. Three databases (Science Direct, Web of Science, and PubMed) were used. The first phase of the search returned 731 articles, of which 9 respected the inclusion/exclusion criteria and were included. These studies confirm the association between intramedullary pressure and fluid dynamics in the LCN. Among the included studies, 7 experimental studies using animal models and 2 numerical models were found. The studies were then ranked according to the nature of the applied loading, either axial compression or direct cyclic intramedullary pressure. The current review revealed that there is an influence of intramedullary pressure on LCN fluid dynamics and that this influence depends on the magnitude and the frequency of the applied pressure. Two studies confirmed that the influence was effective even without bone matrix deformation. While intramedullary pressure is closely associated with LCN fluid, there is a severe lack of studies on this topic. STATEMENT OF SIGNIFICANCE: Since the 1990's, numerical models developed to investigate fluid flow in bone submicrometric porous network are based on the flow induced by matrix deformation. Bone fluid flow is known to be involved in cells stimulation and hence directly influences bone remodeling. Different studies have shown that intramedullary pressure is also associated with bone mechanosensitive adaptation. This pressure is developed in bone due to blood circulation and is increased during loading or muscle stimulation. The current article reviews the studies investigating the influence of this pressure on bone porous fluid flow. They show that fluid flow is involved by this pressure even without bone matrix deformation. The current review article highlights the severe lack of studies about this mechanism.
Keywords: Bone remodelling; Fluid flow; Intramedullary pressure; Lacuno-Canalicular Network; Systematic review.
Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.