Maintaining an optimal leaf and stem orientation to yield a maximum photosynthetic output is accomplished by terrestrial plants using sophisticated mechanisms to balance their orientation relative to the Earth's gravity vector and the direction of sunlight. Knowledge of the signal transduction chains of both gravity and light perception and how they influence each other is essential for understanding plant development on Earth and plant cultivation in space environments. However, in situ analyses of cellular signal transduction processes in weightlessness, such as live cell imaging of signaling molecules using confocal fluorescence microscopy, require an adapted experimental setup that meets the special requirements of a microgravity environment. In addition, investigations under prolonged microgravity conditions require extensive resources, are rarely accessible, and do not allow for immediate sample preparation for the actual microscopic analysis. Therefore, supply concepts are needed that ensure both the viability of the contained plants over a longer period of time and an unhindered microscopic analysis in microgravity. Here, we present a customized supply unit specifically designed to study gravity-induced Ca2+ mobilization in roots of Arabidopsis thaliana. The unit can be employed for ground-based experiments, in parabolic flights, on sounding rockets, and probably also aboard the International Space Station.
Keywords: Calcium; Live cell imaging; Microgravity; Plant life support system; Plant roots.