The chemistry of molecular gold compounds is dominated by the oxidation states +I and +III. For the intermediate oxidation state +II with 5d9 electron configuration, dimerization or disproportionation of the gold(II) radicals is favored, so that only a few mononuclear gold(II) complexes have been isolated to date. The present study addresses the one-electron reduction of the macrocyclic gold(III) complex [AuIIIL]+ of the innocent β-diiminato ligand L2- with a 14-membered macrocycle (L2-=5,7,12,14-tetramethyl-1,4,8,11-tetraazacyclotetradeca-5,7,12,14-tetraenato). Electrochemistry, spectroelectrochemistry and chemical reduction of [AuIIIL]+ monitored by UV/Vis, NMR and EPR spectroscopy together with density functional theory calculations reveal disproportionation of the initially generated but elusive gold(II) complex AuIIL and provide guidelines for prospective stable mononuclear tetraazamacrocyclic gold(II) complexes.
Keywords: disproportionation; gold; macrocycle; redox chemistry.
© 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.