Objectives: Measurable residual disease flow cytometry (MRD-FC) and molecular studies are the most sensitive methods for detecting residual malignant populations after therapy for TP53-mutated acute myeloid leukemia and myelodysplastic neoplasms (TP53+ AML/MDS). However, their sensitivity is limited in suboptimal aspirates or when the immunophenotype of the neoplastic blasts overlaps with erythroids or normal maturing myeloid cells. In this study, we set out to determine if p53 immunohistochemistry (IHC) correlates with MRD-FC and next-generation sequencing (NGS) in the posttherapy setting and to determine the utility of p53 IHC to detect residual disease in the setting of negative or equivocal MRD-FC.
Methods: We retrospectively identified 28 pre- and posttherapy bone marrow biopsy specimens from 9 patients with TP53+ AML/MDS and a p53 overexpressor phenotype by IHC (strong 3+ staining at initial diagnosis). Next-generation sequencing and/or MRD-FC results were collected for each specimen.
Results: Using a threshold of more than ten 2-3+ cells in any one 400× field, p53 IHC detected residual disease with a sensitivity of 94% and a specificity of 89%. The threshold used in this study showed a high degree of concordance among 6 blinded pathologists (Fleiss κ = 0.97).
Conclusions: Our study suggests that p53 IHC can be used as a rapid tool (within 24 hours) to aid in the detection of residual disease that may complement MRD-FC or NGS in cases in which the flow cytometry immunophenotype is equivocal and/or the bone marrow aspirate is suboptimal.
Keywords: acute myeloid leukemia; immunohistochemistry; myelodysplastic syndrome; p53.
© The Author(s) 2024. Published by Oxford University Press on behalf of American Society for Clinical Pathology. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.