TRIP12 governs DNA Polymerase β involvement in DNA damage response and repair

bioRxiv [Preprint]. 2024 Apr 10:2024.04.08.588474. doi: 10.1101/2024.04.08.588474.

Abstract

The multitude of DNA lesion types, and the nuclear dynamic context in which they occur, present a challenge for genome integrity maintenance as this requires the engagement of different DNA repair pathways. Specific 'repair controllers' that facilitate DNA repair pathway crosstalk between double strand break (DSB) repair and base excision repair (BER), and regulate BER protein trafficking at lesion sites, have yet to be identified. We find that DNA polymerase β (Polβ), crucial for BER, is ubiquitylated in a BER complex-dependent manner by TRIP12, an E3 ligase that partners with UBR5 and restrains DSB repair signaling. Here we find that, TRIP12, but not UBR5, controls cellular levels and chromatin loading of Polβ. Required for Polβ foci formation, TRIP12 regulates Polβ involvement after DNA damage. Notably, excessive TRIP12-mediated shuttling of Polβ affects DSB formation and radiation sensitivity, underscoring its precedence for BER. We conclude that the herein discovered trafficking function at the nexus of DNA repair signaling pathways, towards Polβ-directed BER, optimizes DNA repair pathway choice at complex lesion sites.

Publication types

  • Preprint