Glycogen, a complex branched glucose polymer, is responsible for sugar storage in blood glucose homeostasis. It comprises small β particles bound together into composite α particles. In diabetic livers, α particles are fragile, breaking apart into smaller particles in dimethyl sulfoxide, DMSO; they are however stable in glycogen from healthy animals. We postulate that the bond between β particles in α particles involves hydrogen bonding. Liver-glycogen fragility in normal and db/db mice (an animal model for diabetes) is compared using various hydrogen-bond breakers (DMSO, guanidine and urea) at different temperatures. The results showed different degrees of α-particle disruption. Disrupted glycogen showed changes in the mid-infra-red spectrum that are related to hydrogen bonds. While glycogen α-particles are only fragile under harsh, non-physiological conditions, these results nevertheless imply that the bonding between β particles in α particles is different in diabetic livers compared to healthy, and is probably associated with hydrogen bonding.
Keywords: Diabetes; Glycogen; Hydrogen-bond breaker; Molecular structure; Mouse model.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.