A Novel Artificial Coronary Plaque to Model Coronary Heart Disease

Biomimetics (Basel). 2024 Mar 26;9(4):197. doi: 10.3390/biomimetics9040197.

Abstract

Background: Experimental coronary artery interventions are currently being performed on non-diseased blood vessels in healthy animals. To provide a more realistic pathoanatomical scenario for investigations on novel interventional and surgical therapies, we aimed to fabricate a stenotic lesion, mimicking the morphology and structure of a human atherosclerotic plaque.

Methods: In an interdisciplinary setting, we engineered a casting mold to create an atherosclerotic plaque with the dimensions to fit in a porcine coronary artery. Oscillatory rheology experiments took place along with long-term stability tests assessed by microscopic examination and weight monitoring. For the implantability in future in vivo setups, we performed a cytotoxicity assessment, inserted the plaque in resected pig hearts, and performed diagnostic imaging to visualize the plaque in its final position.

Results: The most promising composition consists of gelatin, cholesterol, phospholipids, hydroxyapatite, and fine-grained calcium carbonate. It can be inserted in the coronary artery of human-sized pig hearts, producing a local partial stenosis and interacting like the atherosclerotic plaque by stretching and shrinking with the vessel wall and surrounding tissue.

Conclusion: This artificial atherosclerotic plaque model works as a simulating tool for future medical testing and could be crucial for further specified research on coronary artery disease and is going to help to provide information about the optimal interventional and surgical care of the disease.

Keywords: atherosclerosis; coronary heart disease; plaque.

Grants and funding

This research received no external funding.