Agent-based approaches for biological modeling in oncology: A literature review

Artif Intell Med. 2024 Jun:152:102884. doi: 10.1016/j.artmed.2024.102884. Epub 2024 May 3.

Abstract

Context: Computational modeling involves the use of computer simulations and models to study and understand real-world phenomena. Its application is particularly relevant in the study of potential interactions between biological elements. It is a promising approach to understand complex biological processes and predict their behavior under various conditions.

Methodology: This paper is a review of the recent literature on computational modeling of biological systems. Our study focuses on the field of oncology and the use of artificial intelligence (AI) and, in particular, agent-based modeling (ABM), between 2010 and May 2023.

Results: Most of the articles studied focus on improving the diagnosis and understanding the behaviors of biological entities, with metaheuristic algorithms being the models most used. Several challenges are highlighted regarding increasing and structuring knowledge about biological systems, developing holistic models that capture multiple scales and levels of organization, reproducing emergent behaviors of biological systems, validating models with experimental data, improving computational performance of models and algorithms, and ensuring privacy and personal data protection are discussed.

Keywords: Agent-based modeling; Artificial intelligence; Metaheuristic algorithms; Oncology; Pathway; Precision medicine; Therapeutic targeting.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Artificial Intelligence*
  • Computer Simulation*
  • Humans
  • Medical Oncology / methods
  • Models, Biological*
  • Neoplasms / therapy
  • Systems Analysis