A theory of brain-computer interface learning via low-dimensional control

bioRxiv [Preprint]. 2024 Apr 22:2024.04.18.589952. doi: 10.1101/2024.04.18.589952.

Abstract

A remarkable demonstration of the flexibility of mammalian motor systems is primates' ability to learn to control brain-computer interfaces (BCIs). This constitutes a completely novel motor behavior, yet primates are capable of learning to control BCIs under a wide range of conditions. BCIs with carefully calibrated decoders, for example, can be learned with only minutes to hours of practice. With a few weeks of practice, even BCIs with randomly constructed decoders can be learned. What are the biological substrates of this learning process? Here, we develop a theory based on a re-aiming strategy, whereby learning operates within a low-dimensional subspace of task-relevant inputs driving the local population of recorded neurons. Through comprehensive numerical and formal analysis, we demonstrate that this theory can provide a unifying explanation for disparate phenomena previously reported in three different BCI learning tasks, and we derive a novel experimental prediction that we verify with previously published data. By explicitly modeling the underlying neural circuitry, the theory reveals an interpretation of these phenomena in terms of biological constraints on neural activity.

Publication types

  • Preprint