Alzheimer's disease (AD) is an age-dependent neurodegenerative disease that is typically sporadic and has a high social and economic cost. We utilized the intracerebroventricular administration of streptozotocin (STZ), an established preclinical model for sporadic AD, to investigate hippocampal astroglial changes during the first 4 weeks post-STZ, a period during which amyloid deposition has yet to occur. Astroglial proteins aquaporin 4 (AQP-4) and connexin-43 (Cx-43) were evaluated, as well as claudins, which are tight junction (TJ) proteins in brain barriers, to try to identify changes in the glymphatic system and brain barrier during the pre-amyloid phase. Glial commitment, glucose hypometabolism and cognitive impairment were characterized during this phase. Astroglial involvement was confirmed by an increase in glial fibrillary acidic protein (GFAP); concurrent proteolysis was also observed, possibly mediated by calpain. Levels of AQP-4 and Cx-43 were elevated in the fourth week post-STZ, possibly accelerating the clearance of extracellular proteins, since these proteins actively participate in the glymphatic system. Moreover, although we did not see a functional disruption of the blood-brain barrier (BBB) at this time, claudin 5 (present in the TJ of the BBB) and claudin 2 (present in the TJ of the blood-cerebrospinal fluid barrier) were reduced. Taken together, data support a role for astrocytes in STZ brain damage, and suggest that astroglial dysfunction accompanies or precedes neuronal damage in AD.
Keywords: Alzheimer’s disease; Aquaporin 4; Astrocyte; GFAP; Glymphatic System; Streptozotocin.
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.