Septic cardiomyopathy is a severe cardiovascular disease with a poor prognosis. Previous studies have reported the involvement of ferroptosis in the pathogenesis of septic cardiomyopathy. SGLT2 inhibitors such as dapagliflozin have been demonstrated to improve ischemia-reperfusion injury by alleviating ferroptosis in cardiomyocyte. However, the role of dapagliflozin in sepsis remains unclear. Therefore, our study aims to investigate the therapeutic effects of dapagliflozin on LPS-induced septic cardiomyopathy. Our results indicate that dapagliflozin improved cardiac function in septic cardiomyopathy experimental mice. Mechanistically, dapagliflozin works by inhibiting the translation of key proteins involved in ferroptosis, such as GPX4, FTH1, and SLC7A11. It also reduces the transcription of lipid peroxidation-related mRNAs, including PTGS2 and ACSL4, as well as iron metabolism genes TFRC and HMOX1.
Keywords: Cardiomyopathy; Dapagliflozin; Ferroptosis; Lipopolysaccharide.
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.