Deep learning-based platform performs high detection sensitivity of intracranial aneurysms in 3D brain TOF-MRA: An external clinical validation study

Int J Med Inform. 2024 Aug:188:105487. doi: 10.1016/j.ijmedinf.2024.105487. Epub 2024 May 16.

Abstract

Purpose: To evaluate the diagnostic efficacy of a developed artificial intelligence (AI) platform incorporating deep learning algorithms for the automated detection of intracranial aneurysms in time-of-flight (TOF) magnetic resonance angiography (MRA).

Method: This retrospective study encompassed 3D TOF MRA images acquired between January 2023 and June 2023, aiming to validate the presence of intracranial aneurysms via our developed AI platform. The manual segmentation results by experienced neuroradiologists served as the "gold standard". Following annotation of MRA images by neuroradiologists using InferScholar software, the AI platform conducted automatic segmentation of intracranial aneurysms. Various metrics including accuracy (ACC), balanced ACC, area under the curve (AUC), sensitivity (SE), specificity (SP), F1 score, Brier Score, and Net Benefit were utilized to evaluate the generalization of AI platform. Comparison of intracranial aneurysm identification performance was conducted between the AI platform and six radiologists with experience ranging from 3 to 12 years in interpreting MR images. Additionally, a comparative analysis was carried out between radiologists' detection performance based on independent visual diagnosis and AI-assisted diagnosis. Subgroup analyses were also performed based on the size and location of the aneurysms to explore factors impacting aneurysm detectability.

Results: 510 patients were enrolled including 215 patients (42.16 %) with intracranial aneurysms and 295 patients (57.84 %) without aneurysms. Compared with six radiologists, the AI platform showed competitive discrimination power (AUC, 0.96), acceptable calibration (Brier Score loss, 0.08), and clinical utility (Net Benefit, 86.96 %). The AI platform demonstrated superior performance in detecting aneurysms with an overall SE, SP, ACC, balanced ACC, and F1 score of 91.63 %, 92.20 %, 91.96 %, 91.92 %, and 90.57 % respectively, outperforming the detectability of the two resident radiologists. For subgroup analysis based on aneurysm size and location, we observed that the SE of the AI platform for identifying tiny (diameter<3mm), small (3 mm ≤ diameter<5mm), medium (5 mm ≤ diameter<7mm) and large aneurysms (diameter ≥ 7 mm) was 87.80 %, 93.14 %, 95.45 %, and 100 %, respectively. Furthermore, the SE for detecting aneurysms in the anterior circulation was higher than that in the posterior circulation. Utilizing the AI assistance, six radiologists (i.e., two residents, two attendings and two professors) achieved statistically significant improvements in mean SE (residents: 71.40 % vs. 88.37 %; attendings: 82.79 % vs. 93.26 %; professors: 90.07 % vs. 97.44 %; P < 0.05) and ACC (residents: 85.29 % vs. 94.12 %; attendings: 91.76 % vs. 97.06 %; professors: 95.29 % vs. 98.82 %; P < 0.05) while no statistically significant change was observed in SP. Overall, radiologists' mean SE increased by 11.40 %, mean SP increased by 1.86 %, and mean ACC increased by 5.88 %, mean balanced ACC promoted by 6.63 %, mean F1 score grew by 7.89 %, and Net Benefit rose by 12.52 %, with a concurrent decrease in mean Brier score declined by 0.06.

Conclusions: The deep learning algorithms implemented in the AI platform effectively detected intracranial aneurysms on TOF-MRA and notably enhanced the diagnostic capabilities of radiologists. This indicates that the AI-based auxiliary diagnosis model can provide dependable and precise prediction to improve the diagnostic capacity of radiologists.

Keywords: Artificial intelligence; Deep learning; Intracranial aneurysm; Magnetic resonance angiography.

Publication types

  • Validation Study

MeSH terms

  • Adult
  • Aged
  • Brain / diagnostic imaging
  • Deep Learning*
  • Female
  • Humans
  • Imaging, Three-Dimensional / methods
  • Intracranial Aneurysm* / diagnosis
  • Intracranial Aneurysm* / diagnostic imaging
  • Magnetic Resonance Angiography* / methods
  • Male
  • Middle Aged
  • Retrospective Studies
  • Sensitivity and Specificity