Capillary blood self-collection for high-throughput proteomics

Proteomics. 2024 Aug;24(16):e2300607. doi: 10.1002/pmic.202300607. Epub 2024 May 24.

Abstract

In this study, we sought to compare protein concentrations obtained from a high-throughput proteomics platform (Olink) on samples collected using capillary blood self-collection (with the Tasso+ device) versus standard venipuncture (control). Blood collection was performed on 20 volunteers, including one sample obtained via venipuncture and two via capillary blood using the Tasso+ device. Tasso+ samples were stored at 2°C-8°C for 24-hs (Tasso-24) or 48-h (Tasso-48) prior to processing to simulate shipping times from a study participant's home. Proteomics were analyzed using Olink (384 Inflammatory Panel). Tasso+ blood collection was successful in 37/40 attempts. Of 230 proteins included in our analysis, Pearson correlations (r) and mean coefficient of variation (CV) between Tasso-24 or Tasso-48 versus venipuncture were variable. In the Tasso-24 analysis, 34 proteins (14.8%) had both a correlation r > 0.5 and CV < 0.20. In the Tasso-48 analysis, 68 proteins (29.6%) had a correlation r > 0.5 and CV < 0.20. Combining the Tasso-24 and Tasso-48 analyses, 26 (11.3%) proteins met these thresholds. We concluded that protein concentrations from Tasso+ samples processed 24-48 h after collection demonstrated wide technical variability and variable correlation with a venipuncture gold-standard. Use of home capillary blood self-collection for large-scale proteomics should be limited to select proteins with good agreement with venipuncture.

Keywords: blood proteins; blood specimen collection; proteomics; tasso.

MeSH terms

  • Adult
  • Blood Proteins / analysis
  • Blood Specimen Collection* / methods
  • Female
  • High-Throughput Screening Assays / methods
  • Humans
  • Male
  • Middle Aged
  • Phlebotomy / methods
  • Proteomics* / methods

Substances

  • Blood Proteins