In this work we present the development of an electrochemiluminescence aptasensor based on electrografting molybdenum disulphide nanosheets functionalized with diazonium salt (MoS2-N2+) upon screen-printed electrodes of graphene (SPEs GPH) for viral proteins detection. In brief, this aptasensor consists of SPEs GPH electrografted with MoS2-N2+ and modified with a thiolated aptamer, which can specifically recognize the target protein analyte. In this case, we have used SARS-CoV-2 spike protein as model protein. Electrochemiluminescence detection was performed by using the [Ru(bpy)3]2+/TPRA (tripropylamine) system, which allows the specific detection of the SARS-CoV-2 spike protein easily and rapidly with a detection limit of 9.74 fg/mL and a linear range from 32.5 fg/mL to 50.0 pg/mL. Moreover, the applicability of the aptasensor has been confirmed by the detection of the protein directly in human saliva samples. Comparing our device with a traditional saliva antigen test, our aptasensor can detect the spike protein even when the saliva antigen test gives a negative result.
Keywords: Aptasensor; Covalently linked 2D heterostructures; Electrochemiluminescence; Electrografting; SARS-CoV-2.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.