Intro/background: Octopuses are capable of complex arm movements. Unfortunately, experimental barriers and lack of a robust analysis method made it difficult to quantify the three-dimensional (3D) kinematics of soft, flexible bodies, such as the octopus arm. This information is not only crucial for understanding the posture of the animal's arm but also for the development of similarly designed soft, flexible devices.
Obj/goal: The primary goal of this work was to create a method to comprehensively quantify complex, 3D postures of octopus (Octopus Bimaculoides) arms in a manner that is conducive and translatable to octopus arm-inspired devices for health monitoring and rehabilitation.
Methods: In this study, 3D underwater motion capture was used to collect kinematic data on both live octopuses and disembodied arms that still had neural activity. A new method was developed to define how arm curvature and regional segments were oriented relative to each other in 3D. This included identification of the bend within a segment along with the computation of the relative orientation between segments, thus permitting the complete quantification of complex arm motions.
Results: By comparing vector-based and radius of curvature-based approaches to magnitude of curvature, it was clear that the vector-based approach was less dependent on the length of a segment and that its reported ranges of motion were translatable for outcome measures associated with clinical use. The new approach for the relative orientation of each segment of the octopus arm resulted in the capability of describing the octopus arm in many unique postures, such as straight, simple bending, and complex bending as it utilized the three rotational angles.
Outcome/impact: This method and its application to octopus arms will yield new information that can be used to better communicate and track not only octopus arm movements but in the development of complex, segmented, soft-bodied devices that can be used in health monitoring and rehabilitation.
Copyright: © 2024 Weidig et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.