The condensation of Rubisco holoenzymes and linker proteins into "pyrenoids," a crucial supercharger of photosynthesis in algae, is qualitatively understood in terms of "sticker-and-spacer" theory. We derive semianalytical partition sums for small Rubisco-linker aggregates, which enable the calculation of both dilute-phase titration curves and dimerization diagrams. By fitting the titration curves to surface plasmon resonance and single-molecule fluorescence microscopy data, we extract the molecular properties needed to predict dimerization diagrams. We use these to estimate typical concentrations for condensation, and successfully compare these to microscopy observations.