Responsive Liquid Crystal Network Microstructures with Customized Shapes and Predetermined Morphing for Adaptive Soft Micro-Optics

ACS Appl Mater Interfaces. 2024 Jun 19;16(24):31776-31787. doi: 10.1021/acsami.4c04275. Epub 2024 Jun 10.

Abstract

Stimuli-responsive materials have garnered substantial interest in recent years, particularly liquid crystal networks (LCNs) with sophisticatedly designed structures and morphing capabilities. Extensive efforts have been devoted to LCN structural designs spanning from two-dimensional (2D) to three-dimensional (3D) configurations and their intricate morphing behaviors through designed alignment. However, achieving microscale structures and large-area preparation necessitates the development of novel techniques capable of facilely fabricating LCN microstructures with precise control over both overall shape and alignment, enabling a 3D-to-3D shape change. Herein, a simple and cost-effective in-cell soft lithography (ICSL) technique is proposed to create LCN microstructures with customized shapes and predesigned morphing. The ICSL technique involves two sequential steps: fabricating the desired microstructure as the template by using the photopolymerization-induced phase separation (PIPS) method and reproducing the LCN microstructures through templating. Meanwhile, surface anchoring is employed to design and achieve molecular alignment, accommodating different deformation modes. With the proposed ICSL technique, cylindrical and spherical microlens arrays (CMLAs and SMLAs) have been successfully fabricated with stimulus-driven polarization-dependent focusing effects. This technique offers distinct advantages including high customizability, large-area production, and cost-effectiveness, which pave a new avenue for extensive applications in different fields, exemplified by adaptive soft micro-optics and photonics.

Keywords: liquid crystal network; microlens array; microstructure; photopolymerization; soft lithography; soft optics.