Assisted reproduction is a key aspect of modern animal breeding, providing valuable assistance in improving breeding programs. In this field, the administration of exogenous hormones, such as follicle-stimulating hormone (FSH), plays a crucial role in the induction of multiple ovulations. However, commercial FSH used in veterinary practice has been derived primarily from pituitary glands, obtained mostly from pigs for nearly four decades. Although these hormones have contributed significantly to the advancement of assisted reproductive techniques, they have certain limitations that warrant further improvements. These limitations include contamination with luteinizing hormone (LH), the potential risk of pathogen contamination, the potential to trigger an immune response in non-pig species, and the short half-life in circulation, requiring the implementation of complex 8-dose superovulation schedules. Our research team has developed and characterized a new variant of bovine follicle-stimulating hormone (bscrFSH) to address these limitations. The new hormone is produced recombinantly in CHO cell cultures, with a specific productivity of about 30 pg/cell/day. The bscrFSH can be purified to a high purity of 97 % using a single step of immobilized metal affinity chromatography (IMAC). N-glycan analysis of bscrFSH showed that approximately 74 % of the glycans corresponded to charged structures, including mono-, di-, tri-, and tetra-sialylated glycans. Superovulation trials conducted in cattle revealed that bscrFSH, administered at a total dose of about 0.5 μg per kg of body weight, using a decrescent schedule of 4 doses with 24-h intervals, resulted in an average yield of 8-12 transferable embryos per animal. Further research is required; however, the preliminary findings indicate that bscrFSH, currently packaged under the provisional brand name of Cebitropin B, holds potential as a commercial product for assisted reproduction in ruminants.
Keywords: Assisted reproduction; Follicle stimulating hormone; Recombinant protein; Superovulation.
Copyright © 2024 Elsevier Inc. All rights reserved.