A key step for metastatic outgrowth involves the generation of a deeply altered microenvironment (niche) that supports the malignant behavior of cancer cells. The complexity of the metastatic niche has posed a significant challenge in elucidating the underlying programs driving its origin. Here, by focusing on early stages of breast cancer metastasis to the lung in mice, we describe a cancer-dependent chromatin remodeling and activation of developmental programs in alveolar type 2 (AT2) cells within the niche. We show that metastatic cells can prime AT2 cells into a reprogrammed multilineage state. In turn, this cancer-induced reprogramming of AT2 cells promoted stem-like features in cancer cells and enhanced their initiation capacity. In conclusion, we propose the concept of "reflected stemness" as an early phenomenon during metastatic niche initiation, wherein metastatic cells reprogram the local tissue into a stem-like state that enhances intrinsic cancer-initiating potential, creating a positive feedback loop where tumorigenic programs are amplified.
Keywords: Metastasis; Sox9; alveolar type 2 cells; breast cancer; lung stem cells; metastasis-initiating cells; metastatic niche; multilineage state; tissue reprogramming.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.