Toxoplasma gondii is an obligate intracellular parasite that can infect a variety of mammals including humans and causes toxoplasmosis. Unfortunately, a protective and safe vaccine against toxoplasmosis hasn't been developed yet. In this study, we developed a DNA vaccine encoding the SRS13 protein and immunized BALB/c mice thrice with pVAX1-SRS13 through the intramuscular route (IM) or intradermally using an electroporation device (ID + EP). The immunogenicity of pVAX1-SRS13 was analyzed by ELISA, Western blot, cytokine ELISA, and flow cytometry. The protective efficacy of the pVAX1-SRS13 was investigated by challenging mice orally with T. gondii PRU strain tissue cysts. The results revealed that pVAX1-SRS13 administered through IM or ID + EP routes induced high level of anti-SRS13 IgG antibody responses (P = 0.0037 and P < 0.0001). The IFN-γ level elicited by the pVAX1-SRS13 (ID + EP) was significantly higher compared to the control group (P = 0.00159). In mice administered with pVAX1-SRS13 (ID + EP), CD8+ cells secreting IFN-γ was significantly higher compared to pVAX1-SRS13 (IM) (P = 0.0035) and the control group (P = 0.0068). Mice vaccinated with the SRS13 DNA vaccine did not induce significant IL-4 level. Moreover, a significant reduction in the number of tissue cysts and the load of T. gondii DNA was detected in brains of mice administered with pVAX1-SRS13 through ID + EP and IM routes compared to controls. In conclusion, the SRS13 DNA vaccine was found to be highly immunogenic and confers strong protection against chronic toxoplasmosis.
Keywords: DNA vaccine; Electroporation; SRS13; T. gondii PRU strain; Toxoplasma gondii; Toxoplasmosis.
Copyright © 2024 Elsevier Ltd. All rights reserved.