Orthostatic hypotension (OH) is prevalent in older adults and can cause falls and hospitalization. Diagnostic intermittent blood pressure (BP) measurements are only a proxy for cerebral perfusion and do not reflect daily-life BP fluctuations. Near-infrared spectroscopy (NIRS)-measured cerebral oxygenation potentially overcomes these drawbacks. This study aimed to determine feasibility, face validity, and reliability of NIRS in the home environment. Ten participants with OH (2 female, mean age 77, SD 3.7) and 11 without OH (5 female, mean age 78, SD 6.7) wore a NIRS sensor at home on two different days for 10-11 h per day. Preceded by a laboratory-situated test, cerebral oxygenation was measured during three standardized supine-stand tests per day and during unsupervised daily life activities. Data availability, quality, and user experience were assessed (feasibility), as well as differences in posture-related oxygenation responses between participants with and without OH and between symptomatic (dizziness, light-headedness, blurred vision) and asymptomatic postural changes (face validity). Reliability was assessed through repetitive supine-stand tests. Up to 80% of the standardized home-based supine-stand tests could be analyzed. Oxygenation recovery values were lower for participants with OH (p = 0 .03-0.15); in those with OH, oxygenation showed a deeper maximum drop for symptomatic than asymptomatic postural changes (p = 0.04). Intra-class correlation coefficients varied from 0.07 to 0.40, with no consistent differences over measurements. This proof-of-concept study shows feasibility and face validity of at-home oxygenation monitoring using NIRS, confirming its potential value for diagnosis and monitoring in OH and OH-related symptoms. Further data are needed for conclusions about reliability.
Keywords: Ambulant monitoring; Near-infrared spectroscopy; Orthostatic hypotension; Oxygenation.
© 2024. The Author(s).