Characterization of Cellulosic Pulps Isolated from Two Widespread Agricultural Wastes: Cotton and Sunflower Stalks

Polymers (Basel). 2024 Jun 4;16(11):1594. doi: 10.3390/polym16111594.

Abstract

Globally, huge amounts of cotton and sunflower stalks are generated annually. These wastes are being underutilized since they are mostly burned in the fields. So, in this work, we proposed a three-step method consisting of acid pre-treatment, alkaline hydrolysis, and bleaching for the extraction of cellulose pulps. These pulps were characterized to assess their morpho-structural and thermal properties. The design of experiments and response surface methodology were used for the optimization of the acid pre-treatment in order to achieve maximum removal of non-cellulosic compounds and obtain pulps enriched in cellulose. For cotton stalks, optimal conditions were identified as a reaction time of 190 min, a reaction temperature of 96.2 °C, and an acid (nitric acid) concentration of 6.3%. For sunflower stalks, the optimized time, temperature, and acid concentration were 130 min, 73.8 °C, and 8.7%, respectively. The pulps obtained after bleaching contained more than 90% cellulose. However, special care must be taken during the process, especially in the acid pre-treatment, as it causes the solubilization of a great amount of material. The characterization revealed that the extraction process led to cellulose pulps with around 69-70% crystallinity and thermal stability in the range of 340-350 °C, ready to be used for their conversion into derivatives for industrial applications.

Keywords: agricultural wastes; biomass; cellulose extraction; lignocellulose; revalorization.