Design, synthesis, antineoplastic activity of new pyrazolo[3,4-d]pyrimidine derivatives as dual CDK2/GSK3β kinase inhibitors; molecular docking study, and ADME prediction

Bioorg Chem. 2024 Sep:150:107566. doi: 10.1016/j.bioorg.2024.107566. Epub 2024 Jun 15.

Abstract

In the current study, novel pyrazolo[3,4-d]pyrimidine derivatives 5a-h were designed and synthesized as targeted anti-cancer agents through dual CDK2/GSK-3β inhibition. The designed compounds demonstrated moderate to potent activity on the evaluated cancer cell lines (MCF-7 and T-47D). Compounds 5c and 5 g showed the most promising cytotoxic activity against the tested cell lines surpassing that of the used reference standard; staurosporine. On the other hand, both compounds showed good safety and tolerability on normal fibroblast cell line (MCR5). The final compounds 5c and 5 g showed a promising dual CDK2/GSK-3β inhibitory activity with IC50 of 0.244 and 0.128 μM, respectively, against CDK2, and IC50 of 0.317 and 0.160 μM, respectively, against GSK-3β. Investigating the effect of compounds 5c and 5 g on CDK2 and GSK-3β downstream cascades showed that they reduced the relative cellular content of phosphorylated RB1 and β-catenin compared to that in the untreated MCF-7 cells. Moreover, compounds 5c and 5 g showed a reasonable selective inhibition against the target kinases CDK2/GSK-3β in comparison to a set of seven off-target kinases. Furthermore, the most potent compound 5 g caused cell cycle arrest at the S phase in MCF-7 cells preventing the cells' progression to G2/M phase inducing cell apoptosis. Molecular docking studies showed that the final pyrazolo[3,4-d]pyrimidine derivatives have analogous binding modes in the target kinases interacting with the hinge region key amino acids. Molecular dynamics simulations confirmed the predicted binding mode by molecular docking. Moreover, in silico predictions indicated their favorable physicochemical and pharmacokinetic properties in addition to their promising cytotoxic activity.

Keywords: Anti-cancer; CDK2; GSK-3β; Multi-kinase inhibitors; Pyrazolo[3,4-d]pyrimidine.

MeSH terms

  • Antineoplastic Agents* / chemical synthesis
  • Antineoplastic Agents* / chemistry
  • Antineoplastic Agents* / pharmacology
  • Apoptosis / drug effects
  • Cell Line, Tumor
  • Cell Proliferation* / drug effects
  • Cyclin-Dependent Kinase 2* / antagonists & inhibitors
  • Cyclin-Dependent Kinase 2* / metabolism
  • Dose-Response Relationship, Drug
  • Drug Design*
  • Drug Screening Assays, Antitumor*
  • Glycogen Synthase Kinase 3 beta* / antagonists & inhibitors
  • Glycogen Synthase Kinase 3 beta* / metabolism
  • Humans
  • Molecular Docking Simulation*
  • Molecular Structure
  • Protein Kinase Inhibitors* / chemical synthesis
  • Protein Kinase Inhibitors* / chemistry
  • Protein Kinase Inhibitors* / pharmacology
  • Pyrazoles* / chemical synthesis
  • Pyrazoles* / chemistry
  • Pyrazoles* / pharmacology
  • Pyrimidines* / chemical synthesis
  • Pyrimidines* / chemistry
  • Pyrimidines* / pharmacology
  • Structure-Activity Relationship

Substances

  • Antineoplastic Agents
  • Glycogen Synthase Kinase 3 beta
  • Cyclin-Dependent Kinase 2
  • Pyrimidines
  • Protein Kinase Inhibitors
  • Pyrazoles
  • CDK2 protein, human
  • pyrazolo(3,4-d)pyrimidine