Visual processing relies on the identification of both local and global features of visual stimuli. While well investigated at the behavioral level, the underlying brain mechanisms are less clear, especially in the context of aging. Using fMRI, we aimed to investigate the neural correlates underlying local and global processing in early and late adulthood. We recruited 77 healthy adults aged 19-77 who completed a visual search task based on 2-level hierarchical stimuli made of squares and/or circles. Participants were instructed to detect a target (a square) at either a local (small) or global (large) level of a hierarchical geometrical form, in the presence or absence of other hierarchical geometrical forms (distractors). At the behavioral level, we revealed high accuracy for all participants, but older participants were slower to detect local targets, specifically in presence of distractors. At the brain level, while both local and global processing were associated with occipital activation, local processing also recruited the anterior insula and dorsal anterior cingulate cortex, that are core regions of the salience network. However, while the presence of distractors in the local condition elicited specifically stronger activation within the right anterior insula for the young group, it was not observed for older participants. In addition, older participants showed less activation than younger participants in the occipital cortex, especially for the most complex conditions. Our findings suggest that the brain correlates underlying local and global processing change with aging, especially for complex visual patterns. These results are discussed in terms of top-down reduction effects from the salience network on primary visual areas, that may lead to specific difficulties to process local visual details in older adults.
Copyright: © 2024 Doucet et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.