Canine Bacterial Endocarditis: A Text Mining and Topics Modeling Analysis as an Approach for a Systematic Review

Microorganisms. 2024 Jun 19;12(6):1237. doi: 10.3390/microorganisms12061237.

Abstract

Bacterial endocarditis (BE) is a severe infection of the endocardium and cardiac valves caused by bacterial agents in dogs. Diagnosis of endocarditis is challenging due to the variety of clinical presentations and lack of definitive diagnostic tests in its early stages. This study aims to provide a research literature analysis on BE in dogs based on text mining (TM) and topic analysis (TA) identifying dominant topics, summarizing their temporal trend, and highlighting any possible research gaps. A literature search was performed utilizing the Scopus® database, employing keywords pertaining to BE to analyze papers published in English from 1990 to 2023. The investigation followed a systematic approach based on the PRISMA guidelines. A total of 86 records were selected for analysis following screening procedures and underwent descriptive statistics, TM, and TA. The findings revealed that the number of records published per year has increased in 2007 and 2021. TM identified the words with the highest term frequency-inverse document frequency (TF-IDF), and TA highlighted the main research areas, in the following order: causative agents, clinical findings and predisposing factors, case reports on endocarditis, outcomes and biomarkers, and infective endocarditis and bacterial isolation. The study confirms the increasing interest in BE but shows where further studies are needed.

Keywords: bacterial endocarditis; bartonella; machine learning; text mining; topic analysis.

Publication types

  • Review

Grants and funding

This research received no external funding.