The intracranial effects of flow reversal during transcarotid artery revascularization

Turk Gogus Kalp Damar Cerrahisi Derg. 2024 Apr 30;32(2):123-131. doi: 10.5606/tgkdc.dergisi.2024.25700. eCollection 2024 Apr.

Abstract

Background: This study aimed to assess intraoperative cerebral hemodynamic responses and embolic events during transcarotid artery revascularization via transcranial Doppler, near-infrared spectroscopy, and bispectral index monitoring.

Methods: Twelve patients (7 males, 5 females; mean age: 72.8±9.0 years; range, 63 to 91 years) undergoing transcarotid artery revascularization with simultaneous transcranial Doppler, near-infrared spectroscopy, and bispectral index monitoring were analyzed in this retrospective study between September 2017 and December 2019. The mean flow velocity and pulsatility index of the middle cerebral artery, alongside near-infrared spectroscopy and bispectral index values, before flow reversal, during flow reversal, and after flow reversal phases were investigated. The presence and frequency of high-intensity transient signals were recorded to evaluate embolic incidents.

Results: Significant reductions in middle cerebral artery mean flow velocity were noted during flow reversal (40.58±10.57 cm/sec to 20.58±14.34 cm/sec, p=0.0004), which subsequently returned to and exceeded baseline values after flow reversal cessation (53.33±17.69 cm/sec, p=0.0005). Near-infrared spectroscopy (71±4.4% to 66±6.2%) and bispectral index (45.71±8.5 to 40.14±8.1) values mirrored these hemodynamic changes, with notable decreases during flow reversal, and recoveries after flow reversal. The highest concentration of high-intensity transient signals was observed during stent deployment, signifying a critical embolic phase. No perioperative neurological complications or other significant adverse events were documented.

Conclusion: Transcranial Doppler, near-infrared spectroscopy, and bispectral index effectively monitor cerebral hemodynamics and embolic potential during transcarotid artery revascularization, providing real-time data crucial for optimizing perioperative management. These findings underscore the clinical value of multimodal monitoring in improving patient outcomes in transcarotid artery revascularization procedures.

Keywords: Carotid artery disease; cerebral hemodynamics; neuroprotection systems; transcarotid artery revascularization; transcranial Doppler..