This work aims to improve limited-angle (LA) cone beam computed tomography (CBCT) by developing deep learning (DL) methods for real clinical CBCT projection data, which is the first feasibility study of clinical-projection-data-based LA-CBCT, to the best of our knowledge. In radiation therapy (RT), CBCT is routinely used as the on-board imaging modality for patient setup. Compared to diagnostic CT, CBCT has a long acquisition time, e.g., 60 seconds for a full 360° rotation, which is subject to the motion artifact. Therefore, the LA-CBCT, if achievable, is of the great interest for the purpose of RT, for its proportionally reduced scanning time in addition to the radiation dose. However, LA-CBCT suffers from severe wedge artifacts and image distortions. Targeting at real clinical projection data, we have explored various DL methods such as image/data/hybrid-domain methods and finally developed a so-called Structure-Enhanced Attention Network (SEA-Net) method that has the best image quality from clinical projection data among the DL methods we have implemented. Specifically, the proposed SEA-Net employs a specialized structure enhancement sub-network to promote texture preservation. Based on the observation that the distribution of wedge artifacts in reconstruction images is non-uniform, the spatial attention module is utilized to emphasize the relevant regions while ignores the irrelevant ones, which leads to more accurate texture restoration.
Keywords: CBCT; Limited angle CT; clinical projection data; spatial attention; structure enhancement.