Predictors of radiation-induced changes in arteriovenous malformation patients undergoing radiosurgery: Insights from a Malaysian linear accelerator cohort

Surg Neurol Int. 2024 Jun 28:15:223. doi: 10.25259/SNI_366_2024. eCollection 2024.

Abstract

Background: Radiation-induced changes (RICs) post-stereotactic radiosurgery (SRS) critically influence outcomes in arteriovenous malformation (AVM) treatments. This study aimed to identify predictors of RICs, described the types and severity of RICs, and assessed their impact on patient's functional outcomes to enhance risk assessment and treatment planning for AVM patients.

Methods: This retrospective study analyzed 87 AVM patients who underwent SRS at Hospital Kuala Lumpur between January 2015 and December 2020. RICs were identified through detailed magnetic resonance imaging evaluations, and predictive factors were determined using multiple logistic regression. Functional outcomes were assessed with the modified Rankin scale (mRS).

Results: Among the cohort, 40.2% developed RICs, with radiological RICs in 33.3%, symptomatic RICs in 5.7%, and permanent RICs in 1.1%. Severity categorization revealed 25.3% as Grade I, 13.8% as Grade II, and 1.1% as Grade III. Notably, higher Pollock-Flickinger scores and eloquence location were significant predictors of RIC occurrence. There was a significant improvement in functional outcomes post-SRS, with a marked decrease in non-favorable mRS scores from 8.0% pre-SRS to 1.1% post-SRS (P = 0.031).

Conclusion: The study identified the eloquence location and Pollock-Flickinger scores as predictors of RICs post-SRS. The significant reduction in non-favorable mRS scores post-SRS underscores the efficacy of SRS in improving patient outcomes. Their results highlighted the importance of personalized treatment planning, focusing on precise strategies to optimize patient outcomes in AVM management, reducing adverse effects while improving functional outcomes.

Keywords: Arteriovenous malformation; Linear accelerator; Radiation-induced changes; Stereotactic radiosurgery.