Introduction: Mounting evidence indicates that an individual's humoral adaptive immune response plays a critical role in the setting of SARS-CoV-2 infection, and that the efficiency of the response correlates with disease severity. The relationship between the adaptive immune dynamics in the lower airways with those in the systemic circulation, and how these relate to an individual's clinical response to SARS-CoV-2 infection, are less understood and are the focus of this study.
Material and methods: We investigated the adaptive immune response to SARS-CoV-2 in paired samples from the lower airways and blood from 27 critically ill patients during the first wave of the pandemic (median time from symptom onset to intubation 11 days). Measurements included clinical outcomes (mortality), bronchoalveolar lavage fluid (BALF) and blood specimen antibody levels, and BALF viral load.
Results: While there was heterogeneity in the levels of the SARS-CoV-2-specific antibodies, we unexpectedly found that some BALF specimens displayed higher levels than the paired concurrent plasma samples, despite the known dilutional effects common in BALF samples. We found that survivors had higher levels of anti-spike, anti-spike-N-terminal domain and anti-spike-receptor-binding domain IgG antibodies in their BALF (p<0.05), while there was no such association with antibody levels in the systemic circulation.
Discussion: Our data highlight the critical role of local adaptive immunity in the airways as a key defence mechanism against primary SARS-CoV-2 infection.
Copyright ©The authors 2024.