Avocado cultivar and tree-to-tree leaf compositional differences affect infestation severity of Pseudocysta perseae (Hemiptera: Tingidae)

Environ Entomol. 2024 Oct 11;53(5):849-859. doi: 10.1093/ee/nvae066.

Abstract

Avocado lace bug, Pseudocysta perseae (Heidemann) (Hemiptera: Tingidae), is a sap-feeding insect that feeds on the underside of avocado leaves. First observed in 2019, P. perseae has spread throughout the Hawaiian islands, causing premature leaf drop and decrease in avocado yield. Due to Hawai'i's approximately 200 cultivars comprised of all 3 avocado races with extensive racial hybrids, we were able to investigate whether certain cultivars were more prone to experiencing higher P. perseae abundances and infestations compared to others. We conducted longitudinal abundance surveys on Hawai'i Island across several common avocado varieties monitoring changes in P. perseae abundance. These surveys were supplemented with longitudinal infestation severity surveys across 4 avocado lineages (Mexican, Guatemalan, West Indian, and Guatemalan × West Indian hybrid). Additionally, we collected leaves of 'Sharwil', 'Hass', 'Kahalu'u', and 'Nishikawa' cultivars looking at associations between P. perseae abundance and cultivar, herbivory-related biomechanical traits, and soluble sugar content. We found that some cultivars, such as 'Malama', typically experience lower P. perseae abundances compared to cultivars such as 'Kahalu'u', 'Beshore', and 'Sharwil'. Guatemalan × West Indian hybrid trees were also shown to have a higher probability of experiencing more severe P. perseae infestations compared to other lineages. Lastly, soluble sugar content, specifically fructose content, had a positive effect on juvenile P. perseae abundance. These findings suggest that cultivar differences in P. perseae infestations may exist, but tree-to-tree leaf compositional differences, such as soluble sugar content, may be a large driver of variation in P. perseae abundance.

Keywords: Hawai’i; avocado; cultivar; infestation; invasive.

MeSH terms

  • Animals
  • Hawaii
  • Hemiptera* / physiology
  • Herbivory*
  • Persea*
  • Plant Leaves* / chemistry