Four-Membered Ring-Embedded Cycloarene Enabling Anti-Aromaticity and Ultra-Narrowband Emission

Angew Chem Int Ed Engl. 2024 Oct 21;63(43):e202411415. doi: 10.1002/anie.202411415. Epub 2024 Sep 12.

Abstract

The synthesis of fully fused π-conjugated cycloarenes embedded with nonbenzenoid aromatics is challenging. In this work, the first example of four-membered ring-embedded cycloarene (MF2) was designed and synthesized in single-crystal form by macrocyclization and ring fusion strategies. For comparison, single bond-linked chiral macrocycle MS2 without two fused four-membered rings and its linear-shaped polycyclic benzenoid monomer L1 were also synthesized. The pronounced anti-aromaticity of four-membered rings significantly adjusts the electronic structures and photophysical properties of cycloarene, resulting in an enhancement of the photoluminescence quantum yield (PLQY) from 10.66 % and 10.74 % for L1 and MS2, respectively, to 54.05 % for MF2, which is the highest PLQY among the reported cycloarenes. Notably, owing to the embedded anti-aromatic four-membered rings that reduce structural displacements, MF2 exhibits an ultra-narrowband emission with a single-digit full-width at half-maximum (FWHM) of only 7 nm (0.038 eV), which sets a new record among all reported organic narrowband luminescent molecules, and represents the first example of ultra-narrowband emission in conventional polycyclic aromatic hydrocarbons (PAHs) devoid of heteroatoms.

Keywords: anti-aromaticity; cycloarenes; four-membered ring; full-width at half-maximum (FWHM); ultra-narrowband emission.